Mixture Density Mercer Kernels: A Method to Learn Kernels Directly from
Data*

Ashok N. Srivastava, Ph.D."

December 29, 2003

This paper was submitted to the 2004 STAM
Data Mining Conference on September 15, 2003.

Abstract

This paper presents a method of generating Mercer Ker-
nels from an ensemble of probabilistic mixture models,
where each mixture model is generated from a Bayesian
mixture density estimate. We show how to convert the
ensemble estimates into a Mercer Kernel, describe the
properties of this new kernel function, and give exam-
ples of the performance of this kernel on unsupervised
clustering of synthetic data and also in the domain of
unsupervised multispectral image understanding.
Keywords: Clustering, Mixture Density Estimation,
Kernel Methods, Unsupervised Learning, Image Seg-
mentation

1 Introduction and Previous Work

This paper addresses the problem of estimating the
posterior probability of a continuous random variable
x € R?% assuming that the underlying data generating
process is possibly a Gaussian mixture density function.
The posterior probability we wish to estimate is P(c|x;)
where x; is one of N independent and identically
distributed realizations from a data set X and c is one
of C clusters or modes. There is an abundant literature
on mixture density estimation, as it arises in classical
statistics [12], statistical machine learning [8], and data
mining [2]. Recently, there has been additional work
in performing clustering [7] or density estimation [11]
in high, possibly infinite dimensional Hilbert spaces
defined by Mercer Kernels.

Traditional algorithms used to generate the proba-
bility density P(x|©) assume that:

C
(1.1) P(x10) = 3" P()P(x[6.)
c=1

" *This work is funded in part by NASA’s Intelligent Data
Understanding program.

TResearch Institute of Advanced Computer Science, NASA
Ames Research Center

where © is a vector containing the C' model parame-
ters, and 0. are the model parameters for the cth mix-
ture component. The parameters of such a model are
obtained through Expectation Maximization of the ap-
propriate log-likelihood function or, more generally, the
posterior log-likelihood.

We propose to assess the posterior class probabili-
ties by generating a kernel function K (x;,x;) that mea-
sures the similarity between two data points x; and x;
through the use of an ensemble of mixture densities of
the form given above. We show that under certain sim-
plifying conditions this kernel function, which we call
a mizture density kernel is a Gram matrix that mea-
sures the number of times on average an ensemble of
mixture density estimates agree that two points arise
from the same mode of the probability density func-
tion. This kernel function capitalizes on the fact that
each estimated probability density function is a non-
optimal sample from a model space, and relies heavily
on the theory of bagged classifiers [1]. We also show
that the ensemble of mixture models is a method to
empirically combine the posterior probabilities, and re-
lations to the theory of kernel alignment are given. Due
to the fact that the kernel function can be derived from
an ensemble of Bayesian mixture models, we have the
ability to encode domain knowledge in the kernel func-
tion through the use of informative priors, thus aiding
the search for an optimal model. Although this paper
presents results of this kernel function on unsupervised
learning problems, they can be applied equally well to
typical supervised learning learning problems such as
classification and regression in a straightforward man-
ner.

The paper begins with a description of the notation
used in this paper, gives a brief introduction to Bayesian
mixture modelling, introduces Mercer kernels and shows
how they can be interpreted as a similarity measure,
introduces Mixture Density Kernels and compares them
with other kernel functions, and then gives experimental
results of the algorithm on unsupervised learning in
a synthetic data set and then a real-world task of
multispectral image understanding.

2 Notation

e p is the dimension of the data

e M is the space of models from which the mixture
density models are drawn.

e F is the feature space, which may be a high
dimensional (but finite) space, or more generally
an infinite dimensional Hilbert space.

e N is the number of data points x; drawn from a p
dimensional space

e M is the number of probabilistic models used in
generating the kernel function.

e (' is the number of mixture components in each
probabilistic model. In principle one can use a
different number of mixture components in each
model. However, here we choose a fixed number
for simplicity.

e x; is a p X 1 dimensional real column vector that
represents the data sampled from a data set X.

e O(x) : RP — F is generally a nonlinear mapping
to a high, possibly infinite dimensional, feature
space F. This mapping operator may be explicitly
defined or may be implicitly defined via a kernel
function.

o K(x;,%x;) = ®(x;)®T(x;) € R is the kernel
function that measures the similarity between data
points x; and x;. If K is a Mercer kernel, it can
be written as the outer product of the map ®.
As i and j sweep through the N data points, it
generates an N X N kernel matrix.

e O is the entire set of parameters that specify a
mixture model.

3 Mixture Models:
Space

A Sample from a Model

In this section, we briefly motivate the development of
Mixture Density Kernels by showing that the combined
result of model misspecification and the effects of a finite
data set can lead to high uncertainty in the estimate of

a mixture model. We closely follow the arguments given
n [15].

Suppose that a data set A" is generated by drawing a
finite sample from a mixture density function f(A*, ©*),
where A* defines the true density function (say a Gaus-
sian mixture density) and is a sample from a large but
finite class of models M, and ©* defines the true set
of parameters of that density function. In the case of
the Gaussian mixture density, these parameters would
be the means and covariance matrices for each Gaus-
sian component, and the number of components that
comprise the model. We can compute the probability
of obtaining the correct model given the data as fol-
lows (see Smyth and Wolpert, 1998 for a detailed dis-
cussion). The posterior probability of the true density
1 = f(A*,0%) given the data X is:

/ /R(M P(A,0]X) x

P(A, ©))dAdO

P(f(A"

where the first integral is taken over the model space
M and the second integral is taken over the region in
the parameter space that is appropriate for the model
A, and J is the Dirac delta function. Using Bayes rule,
it is possible to expand the posterior into a product of
the posterior of the model uncertainty and the posterior
of the parameter uncertainty. Thus, we have:

P(FIY) = / /R o P(AJ)P(OIA,) x
))dAdO
- // P(O|A, X)P(A, X) x
R(M)
))dAd©

The first equation above shows that there are two
sources of variation in the estimation of the density
function. The first is due to model misspecification, and
the second is due to parameter uncertainty. The second
equation shows that if prior information is available, it
can be used to modify the likelihood of the data in order
to obtain a better estimate of the true density function.
The goal of this paper is to seek a representation
of the posterior P(x;|0) by reducing these errors by
embedding x; in a high dimensional feature space that
defines a kernel function.

4 Review of Kernel Functions

Mercer Kernel functions can be viewed as a measure
of the similarity between two data points that are em-
bedded in a high, possibly infinite dimensional feature
space. For a finite sample of data X, the kernel func-

tion yields a symmetric N x N positive definite ma-
trix, where the (i, j) entry corresponds to the similarity
between (x;,x;) as measured by the kernel function.
Because of the positive definite property, such a Mer-
cer Kernel can be written as the outer product of the
data in the feature space. Thus, if ®(x;) : RY — F
is the (perhaps implicitly) defined embedding function,
we have K (x;,%x;) = ®(x;)®7 (x;). Typical kernel func-
tions include the Gaussian kernel for which K (x;,x;) =
P (x;)®7 (x;) = exp(—52z|[x; — x;{|?), and the polyno-
mial kernel K (x;,x;) = ®(x;)®7 (x;) =< x;,x; >P.
For supervised learning tasks, linear algorithms are
used to define relationships between the target variable
and the embedded features [4]. Work has also been done
in using kernel methods for unsupervised learning tasks,
such as clustering [7, 16] and density estimation [11].

5 Mixture Density Kernels

The idea of using probabilistic kernels was dis-
cussed by Haussler in 1999 [9] where he observes
that if K(x;,x%x;) > 0V (x4,%;) € X x X, and
Do, Dox; K(xl,x]) = 1 then K is a probability distri-
bution and is called a P-Kernel. He further observed
that the Gibbs kernel K(x;,x;) = P(x;)P(x;) is also
an admissible kernel function.

Although these kernel functions either represent or
are derived from probabilistic models, they may not
measure similarity in a consistent way. For example,
suppose that x; is a low probability point, so that
P(x;) ~ 0, In the case of the Gibbs kernel, K (x;,x;) =~
0, although the input vectors are identical. The Gram
matrix generated by this kernel function would only
show those points as being similar which have very high
probabilities. While this feature may be of value in
some applications, it needs modification to work as a
similarity measure.

Our idea is to use an ensemble of probabilistic mix-
ture models as a similarity measure. Two data points
will have a larger similarity if multiple models agree
that they should be placed in the same cluster or mode
of the distribution. Those points where there is dis-
agreement will be given intermediate similarity mea-
sures. The shapes of the underlying mixture distribu-
tions can significantly affect the similarity measurement
of the two points. Experimental results uphold this intu-
ition and show that in regions where there is “no ques-
tion” about the membership of two points, the Mix-
ture Density Kernel behaves identically to a standard
mixture model. However, in regions of the input space
where there is disagreement about the membership of
two points, the behavior may be quite different than
the standard model. Since each mixture density model
in the ensemble can be encoded with domain knowledge

by constructing informative priors, the Bagged Proba-
bilistic Kernel will also encode domain knowledge. The
Bagged Probabilistic Kernel is defined as follows:

K(xi,xj) = ‘I’(Xi)‘I’T(Xj)

Z Z P (emlxi)P,

m=1c,,=1

Z (%5, %;) m(Cm %)

The feature space is thus defined explicitly as follows:
(D(XZ) = [Pl(C: 1|Xi),P1(C:2|Xi)7...,

Pl(C = C|Xi),P2(C = 1|xi), NN 7f)]\/](c = C|XZ)]

The first sum in the defining equation above sweeps
through the M models in the ensemble, where each
mixture model is a Maximum A Posteriori estimator
of the underlying density trained by sampling (with
replacement) the original data. We will discuss how
to design these estimators in the next section. C,,
defines the number of mixtures in the mth ensemble,
and ¢, is the cluster (or mode) label assigned by the
model. The quantity Z(x;,x;) is a normalization such
that K(x;,x;) =1 for all i. The fact that the Mixture
Density Kernel is a valid kernel function arises directly
from the definition. In order to prove K is a valid kernel
function, we need to show that it is symmetric, and that
the kernel matrix is positive semi-definite[4]. The kernel
is clearly symmetric since K(x;,x;) = K(x;,x;) for all
values of 7 and j. The proof that K is positive semi-
definite is straightforward and arises from the fact that
® can be explicitly known. For nonzero a:

(5.2)aTK(xi,xj)a = OZT(I)(XZ')(I)T(XJ')O(=pT3>0

The Mixture Density Kernel function can be inter-
preted as follows. Suppose that we have a hard classifi-
cation strategy, where each data point is assigned to the
most likely posterior class distribution. In this case the
kernel function counts the the number of times the M
mixtures agree that two points should be placed in the
same cluster mode. In the soft classification strategy,
two data points are given an intermediate level of simi-
larity which will be less than or equal to the case where
all models agree on their membership. Further inter-
pretation of the kernel function is possible by applying
Bayes rule to the defining equation of the Mixture Den-
sity Kernel. Thus, we have:

K(Xi7xj) — Z Z lecm) (Cm) %
(5.3) Pm(Xj|Cm)Pm(cm)

P (Xj)

PP

m=1cm,=1

xl,xj|cm)P2 (em)
m (X3, X))

The second step above is valid under the assumption
that the two data points are independent and identically
distributed. This equation shows that the Mixture Den-
sity Kernel measures the ratio of the probability that
two points arise from the same mode, compared with
the unconditional joint distribution. If we simplify this
equation further by assuming that the class distribu-
tions are uniform, the kernel tells us on average (across
ensembles) the amount of information gained by know-
ing that two points are drawn from the same mode in a
mixture density.

It is not possible to obtain similarity through com-
puting the average density across an ensemble (which
would be the traditional approach to bagging), because
in that case, P(z) = YM_ S | P, (k|z) Py (k) the as-
signment of a data point to a given mixture component
is arbitrary. Thus, for two given probabilistic models
P,, and P,, cluster ¢, may not be the same as cluster
¢n- This lack of similarity may go beyond the mere prob-
lem that the mixture assignments are arbitrary. The
geometry of the mixture components may be different
from run to run. For example, in the case of a Gaussian
mixture model, the positions of the mean vectors pi,
and u, and their associated covariance matrices may
be different.

The dimension of the feature space defined by the
Bagged Probabilistic Kernel is large but finite. In the
case where the number of components varies for each
member, the dimensionality is dim(F) = an\f{:l Cn.
Once normalized to unit length (through the factor
Z(x;,%;)), the ®(x;) vectors represent points on a
high dimensional hypersphere. The angle between the
vectors determines the similarity between the two data
points, and the (4, j) element of the kernel matrix is the
cosine of this angle.

Building the Mixture Density Kernel requires build-
ing an ensemble of mixture density models, each repre-
senting a sample from the larger model space M. The
greater the heterogeneity of the models used in gener-
ating the kernel, the more effective the procedure. In
our implementation of the procedure, the training data
is sampled M times with replacement. These overlap-
ping data sets, combined with random initial conditions
for the EM algorithm, aid in generating a heterogenous
ensemble. Other ways of introducing heterogeneity in-
clude encoding domain knowledge in the model. This
can be accomplished through the use of Bayesian Mix-
ture Densities, which is the subject of the next section.
6 Review of Bayesian Mixture
Estimation

Density

A Bayesian formulation to the density estimation prob-
lem requires that we maximize the posterior distribution

P(©|X) which arises as follows:

P(X|0)P(O)

(6.4) D

P(B|X) =
Cheeseman and Stutz 1995, among others, showed that
prior knowledge about the data generating process can
be encoded in the prior P(©) in order to guide the
optimization algorithm toward a model ©' that takes
the domain knowledge into account. This prior assumes
that a generative model A has been chosen (such as
a Gaussian), and determines the prior over the model
parameters.

A Bayesian formulation to the mixture density
problem requires that we specify the model (A) and then
a prior distribution of the model parameters. In the
case of a Gaussian mixture density model for x € RY,
we take the likelihood function as:

P(xlte) = Plxlue, Se.c)
(2m)% || %

expl— (¢ — 1) B (x =)

In the event that domain information is to be encoded, it
is convenient to represent it in terms of a conjugate prior
for the Gaussian distribution. A conjugate is defined as
follows:

DEFINITION 6.1. A family F of probability density
functions is said to be conjugate if for every f € F,
the posterior f(©|x) also belongs to F.

For a mixture of Gaussians model, priors can be set as
follows[6]:

e For priors on the means, either a uniform distribu-
tion or a Gaussian distribution can be used.

e For priors on the covariance matrices, the
Wishart density can be used: P(X;|a,[,J)
|57 exp(—atr(£713)/2).

e For priors on the mixture weights, a Dirichlet
distribution can be used: P(p;|y) o [, p)" ",
where p; = P(c =1).

These priors can be viewed as regularizers for the mix-
ture network as in [14]. Maximum a posteriori esti-
mation is performed by taking the log of the posterior
likelihood of each data point x; given the model ©. The
following function is thus optimized using the Expecta-
tion Maximization[5]:

N
[[Pxil0)P(©)

=1

(6.5) 1(©) =log

In some cases, details of the underlying distribution
are known and can be used to influence the estimated
distribution. For example, in some cases there may
be prior knowledge of the class distribution based on
previous work, in which case the Dirichlet distribution
would be appropriate. Many studies can be performed
using noninformative priors, in which case P(©) = 1.
In the former case, the mixture density kernel takes
domain information into account, whereas in the latter
case, it is determined directly from the data.

7 Comparison with Other Kernels

We now compare the Mixture Density Kernel with three
other types of kernels: the Gaussian or Radial Basis
Function (RBF) kernel and other parametric kernels
such as the polynomial kernel, the Fisher kernel, and
kernel alignment, where the functions are designed to
maximize the accuracy of a prediction.

The RBF kernel and other parametric kernel func-
tions are usually chosen using some heuristic method
where the classification accuracy or other criterion is
used to choose the best kernel. In the case of the Mix-
ture Density Kernel, the underlying structure of the
data is used to generate the kernel function. Thus, it
can improve upon the standard set of kernel functions
and can be used in situations where no clear objective
criterion is available, such as in unsupervised learning
problems like clustering. The parametric kernels are ap-
propriate for use in unsupervised and supervised prob-
lems alike.

The Fisher kernel as developed by Jaakkola and
Haussler (1999) [10] and the “Tangent of vectors of
posterior log odds” [17] kernel use probabilistic models
to generate kernel functions. Kernel Alignment [3]
is another method to generate kernel functions, but
does not use a probabilistic model as its underlying
basis. However, these kernel functions are optimized for
discriminative performance and may not be appropriate
for unsupervised problems such as clustering.

8 Kernel Clustering in Feature Space

Girolami, (2001) has given an algorithm to perform
clustering in the feature space using an approach similar
to k-means clustering. A brief review of the method
follows. The cost function for k-means clustering in the
feature space at a given instant in time is:

N K
1
i=1 k=1
o
[@(Z:) — my;]
where gg; is the cluster membership indicator function
(qri = 1 if vector Z; is a member of cluster k, and

zero otherwise), and m{ is the cluster center in the fea-
ture space. Thus, if we expand the right-hand side of
the above equation, and take my = % Zfil a4 ®(Z;),
which represents the centroid of the cluster in feature
space, we obtain an equation in which only inner prod-
ucts appear. The nonlinear mapping ® does not need
to be determined explicitly because the kernel func-
tion is taken as the inner product in the feature space:
Ki; = ®7(Z;)®(Z;). The objective of kernel clustering
is to find a membership function ¢ and cluster centers
m® that minimize the cost G®. Various methods can
be used to minimize G®, including annealing methods
(as described in Girolami, 2001) or direct search. If
the annealing method is used, the cluster centers are
implicitly defined. However, depending on the kernel
function used, a direct search approach allows for the
pre-image of the cluster center to be explicitly known.
Note that K, the number of clusters in the feature space,
need not be directly related to Zi\il Cyn, which is the
number of dimensions of the feature space, nor does K
need to be a direct function of the number of modes
in each mixture ensemble. After the optimization is
completed, it is possible to compute the uncertainty in
the clustering by computing the entropy of the clus-
ter assignment probability for a given point through
e(x;) = —Z,If:l qrilog qr;. We use this quantity to
characterize the quality of our results in subsequent ex-
periments.

9 Experiments and Results

In this section, we describe the performance of the Mix-
ture Density Kernels on a synthetic clustering problem
and on a real-world image segmentation problem. For
the synthetic data set, we show that the algorithm pro-
duces superior results when compared with a standard
Gaussian kernel.

9.1 Clustering with Mixture Density Mercer
Kernels on Synthetic Data Figure 1 shows a plot
of the two-dimensional synthetic data. These data are
generated from a mixture of three Gaussians. The
first Gaussian, labelled with the symbol ’o’ has a small
variance compared with the other two Gaussians. The
second Gaussian has a larger spread, and the third
Gaussian partially overlaps the first and second [13].
We generated 10,000 points for training, testing, and
evaluation of the model. We recognize that this amount
of data is very large to specify the model, but wanted
to also obtain an estimate of the performance of the
algorithm on a moderate sized data set.

The first experiment consists of computing the
Kernel matrix for the synthetic data using a Gaussian
Kernel as well as the Mixture Density Mercer Kernels.

Data generated from a sample of a mixture of three Gaussian density functions

+ x 0
WN

Figure 1: This two dimensional synthetic data was
generated by sampling a Gaussian Mixture Density
with prior probabilities P(c) = [0.3,0.5,0.2], means
w1 = [2,3.5],u2 = [0,0],us = [0,2.0], and standard
deviations o1 = 0.2,02 = 0.5,03 = 1.0. Clusters 2 and
3 overlap due to their larger standard deviations.

Since we generated the data, we are able to compute
the error between the calculated kernel matrix and the
optimal kernel matrix. In the best case, where there is
no error in classification, the kernel matrix should be
a block diagonal matrix, since each point falls in only
one cluster. For the Gaussian kernel shown in Figure 2
we see that Class 1 is almost perfectly classified, i.e.,
the kernel matrix is nearly square in the upper right
hand corner. Class 2 has a higher degree of error as
depicted by the larger size squares in the lower, off
diagonal elements. Class 3 has the poorest performance,
since its class distribution is washed between the other
two classes, as exhibited by the lack of a clear block
structure. The mean squared error between the ideal
block diagonal matrix and the calculated Gaussian
kernel matrix is approximately 0.09 £+ 10%.

Figure 3 shows the kernel matrix for the Mixture
Density Mercer Kernels. We generated this matrix by
taking C,, = 5 for all m and M = 50, which represents
the number of clusters in the ensemble models, and the
number of ensembles, respectively. We initialized the
EM algorithm with the initial centers from a k-means
algorithm. We assumed spherical covariance matrices
but put no further prior information into the model.

This figure illustrates that, as in Figure 2, Cluster
1 is well defined with nearly all the density in the
matrix in the upper left hand corner. However, unlike
the Gaussian kernel, the Mixture Density kernel better

Kernel Matrix for Gaussian Kernel

Figure 2: This is a representation of the Gaussian
Kernel matrix for the synthetic data show in Figure 1.
The size of the square corresponds to the magnitude of
the kernel value (maximum value is 1). Class 1 exhibits
a very clear clustering, whereas Class 3 shows a high
degree of error and confusion with the other classes. The
mean squared error between the ‘true’ kernel matrix and
the calculated Gaussian kernel matrix is 0.09 + 10%.

distinguishes Clusters 2 and 3. In fact, Cluster 3 is a
well formed block with some errors made in assigning
points to Cluster 2. However, these points may be
in regions where there is significant overlap between
the two Gaussians that generated these points. The
mean squared error for this kernel matrix is 0.04 +
10%. Building the Mixture Density Kernel matrix on
the 10,000 points in the training and test sets took
approximately 2 minutes on a 2 GHz linux machine with
dual Xeon processors.

While this result is not completely unexpected, it
validates the intuition that the Mixture Density Ker-
nel can correctly characterize data that have multiple
modes, but can also help reduce the uncertainty in re-
gions where there are overlaps between modes. In this
case, the data generating process matched the model
used in the sense that both were Gaussian distributed.
However, we searched for a distribution with 5 modes,
as opposed to the correct value which would have been
3. Our studies indicate that the choice of the number of
modes does not greatly effect the distribution of points
in the Kernel matrix.

9.2 Image Segmentation over Snow and Ice In
this section, we describe the performance of the Mixture
Density Mercer Kernel algorithm on a real-world image

Figure 3: The kernel matrix generated from the Mixture
Density Mercer Kernels. While Class 1 continues to be
clearly demarcated in the upper left hand region as with
the Gaussian Kernel, this kernel also does a better job
at distinguishing between Clusters 2 and 3. The mean
squared error between the correct kernel matrix and the
estimated kernel matrix is 0.04 + 10%. Notice that
some points are not correctly classified by this kernel as
indicated by the dark vertical lines in the off-diagonal
regions of the matrix. These lines correspond to points
in the data space which arise from overlapping modes
of the mixture density.

segmentation problem. We begin by giving a brief
motivation of the problem, followed by an analysis of
the results.

The detection of clouds within a satellite image
is essential for retrieving surface geophysical parame-
ters from optical and thermal imagery. Operational
surface albedo and temperature products require the
cloud-detection because the retrieval methods are valid
for clear skies only. Even a small percentage of cloud
cover within a radiometer pixel can affect in such a
way that determination of surface variables, such as
albedo and temperature becomes impossible. Thus, rou-
tine processing of satellite data requires reliable auto-
mated cloud detection algorithms that are applicable
to a wide range of surface types. Unfortunately, cloud-
detection, particularly over snow- and ice-covered sur-
faces is a problem that has plagued working with opti-
cal and thermal imagery since the first satellite-imaging
sensor. Cloud-detection over snow and ice is difficult
due to the lack of spectral contrast between clouds and
snow. However, spectral information in the shortwave
infrared, texture patterns, and other features may be
used together to detect cloud contamination.

Common approaches to detecting cloud cover are
based on spectral contrast, radiance spatial contrast,
radiance temporal contrast, or a combination of these
methods. These techniques work well over dark targets
(e.g. vegetation), since clouds appear brighter (higher
albedo) in the visible range, and have lower tempera-
tures in the infrared compared to the cloud-free back-
ground. Threshold values are then chosen to represent
the cloud-free background. Problems with this method
however, are that different thresholds typically need to
be selected from scene to scene. Another type of cloud
detection that does not require absolute thresholds eval-
uates the spatial coherence of the observed scene. How-
ever, coherence tests suffer from the fact that false de-
tection is likely for clear pixels directly adjacent to cloud
pixels.

10 Data and Experimental Results

We obtained MODIS level 1B data for the Greenland ice
sheet from the NASA Langley DAAC and mapped the
data to a 1.25 km equal-area scalable Earth-grid (EASE-
grid) using software developed by NSIDC to process
MODIS level 1B data and convert the visible chan-
nel data to top-of-the-atmosphere (TOA) reflectances.
Next the TOA reflectances were normalized by the co-
sine of the solar zenith angle. Only the first 7 MODIS
channels were used for this study. The image shown in
Figure 4 was taken on day 188 of the year 2002 and
is the output of Channel 6, which is tuned to detect
clouds. Figure 5 shows the corresponding test image,
which was taken on day 167 of the year 2002. We are
unable to show the images in the other 5 bands due
to space limitations. As expected, the spectral signals
for the 7 different MODIS channels are highly corre-
lated, with linear correlation coefficients over 98% We
used this data as a training set for the Mixture Density
Mercer Kernel. We prepared the data for use in the al-
gorithm by taking the first difference across the spectral
bands thus yielding 6 differenced bands and then build-
ing 5 x 5 blocks of the data. This procedure results in
a 150 dimensional vector representing each pixel, where
150 = 5x5x6. We have found that the differencing pro-
cedure yields improved results for the Mixture Density
Kernel as well as for other detection algorithms.
Figure 6 shows the result of learning a standard
Gaussian Mixture Model with 10 modes on the training
data in Figure 4, and applying that model to the test
data shown in Figure 5. The model does a good job
at segmenting the image, and reveals the large three-
pronged cloud over the ice sheet. However, notice
that the cloud is characterized as a single monolithic
entity with little structure depicted within it. A careful
comparison of the same region with the test image in

Channel | Spectral Wavelength

(nm)
620-670
841-876
459-479
545-565
1230-1250
1628-1652
2105-2155

| O O | W N =

Table 1: The bandwidths for the first seven MODIS
channels. The spatial resolutions for Channels 1 and 2
are 250 m, and 500 m for Channels 3-7.

Figure 4: This figure shows the output of Channel 6 for
day 188 in the year of 2002 from the MODIS instrument.
Clouds are characterized by regions of greater density
of white. This data was used for training the Mixture
Density Mercer Kernel as well as the Gaussian Mixture
Model.

Channel 6 Data

Figure 5: This figure shows the output of Channel 6 for
day 167 in the year of 2002 from the MODIS instrument.
Clouds are characterized by regions of greater density of
white. This data was used to test the Mixture Density
Mercer Kernel as well as the Gaussian Mixture Model.

Figure 5 shows that there is considerable structure to
the cloud that is missed. Furthermore, other regions,
such as the large cloud in the lower right hand portion of
the image are broken into multiple constituents, whereas
Channel 6 does not show such structure.

Figure 7 shows the results of applying the same data
to the Mixture Density Kernel. We built the kernel on
the same training data, and used 10 mixtures in each
model in the ensemble. We built 50 ensembles, resulting
in a 500 dimensional feature space. The first area to
notice is the structure of the three-pronged cloud over
the ice sheet. This structure indicates that the cloud is
not a homogeneous entity, but has several constituents.
The western side of the image also shows a considerable
amount of variation, particularly in the clouds in the
lower part of the image. We point out these details
in contrast to the results for the Gaussian Mixture
Model for the same region. These results suggest that
the Mixture Density Kernel can reveal new features
in the data in some cases better than the Gaussian
Mixture Model. However, such variation can be found
in other regions of the image, thus making an objective
evaluation difficult. This difficulty is not unique to
Mixture Density Kernels and applies equally to general
unsupervised learning algorithms.

11 Discussion and Conclusions

We have shown a method to generate a Mercer Kernel
function from an ensemble of mixture models. The

GMM Result

Figure 6: The results of applying a Gaussian Mixture
Model to the test data using 10 mixture coefficients.
This model does a good job at segmenting the image
across the seven spectral bands. Notice that the large
three-pronged cloud is characterized as a single entity.

Kernel Cluster

Figure 7: This figure shows the results of the Mixture
Density Mercer Kernel on the test data using 10 mix-
tures in the ensemble with 50 models in total. In com-
parison to the Gaussian Mixture Model, these results
show a difference in the characterization of the three-
pronged cloud over the ice sheet. This cloud shows ad-
ditional structure using two different elements. Other
areas of comparison are the three clouds at the top of
the image. The Mixture Density Mercer Kernel method
correctly segments these into the same class, whereas
there is considerable variation in the competing model.

Kernel Cluster Uncertainty

3

0.25

0.2

Figure 8: This figure shows the uncertainty in the
cluster assignment as shown by the entropy of class
distribution. It is interesting to note that there is very
low uncertainty over most of the ice sheet, even though
it is divided into two entities. The three-pronged cloud
over the ice sheet shows up as a region with higher
uncertainty, as one would expect.

Mixture Density Mercer Kernel function is the dot
product of the vectors of class distributions across
ensembles. We have shown that this function can
be interpreted as a new similarity measure between
two data points, and has the feature that regions of
higher uncertainty can be reduced. We exhibited the
algorithm in an unsupervised clustering setting, where
it shows some promise. We have also shown that the
Mixture Density Mercer Kernel can incorporate domain
knowledge through its inclusion as a prior distribution
on the ensemble models. While the algorithm has some
advantages, it is expensive to compute and still exhibits
some run-to-run variation. We are currently researching
methods to further reduce this variation.

This paper has shown the behavior of the new kernel
on unsupervised clustering problems. We are currently
preparing the results of using this kernel function for
supervised prediction problems, in particular on the
snow, ice, and cloud classification.

12 Acknowledgements

The author would like to thank Bill Macready, Nikunj
Oza, and Julienne Stroeve for valuable discussions and
feedback. Dr. Stroeve also provided the MODIS
data used as examples in this paper. This work was
supported by the NASA Intelligent Data Understanding
segment of the Intelligent Systems Program.

References

(1]
2]

3]

(4]

5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]
(14]

(15]

[16]

(17]

L. Breiman, Bagging predictors, Machine Learning 26
(1996), 123-140.

P. Cheeseman and J. Stutz, Bayesian classification
(autoclass): Theory and results, Advances in Knowl-
edge Discovery and Data Mining (1995).

N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-
Taylor, On kernel target alignment, Journal of Machine
Learning Research (2002).

N. Cristianini and J. Shawe-Taylor, An introduction to
support vector machines, Cambridge University Press,
2000.

A. P. Dempster, M. Laird, N., and D. B. Rubin,
Mazimum likelihood from incomplete data via the em
algorithm, Journal of the Royal Statistical Society B
(1977).

Operations for Learning with Graphical Models, Bun-
tine, w. I., Journal of Artificial Intelligence Research 2
(1994), no. 1, 159-225.

M. Girolami, Mercer kernel based clustering in feature
space, IEEE Transactions on Neural Networks 13
(2001), no. 4, 780-784.

T. Hastie, R. Tibshirani, and J. Friedman, The ele-
ments of statistical learning: Data mining, inference,
and prediction, Springer, 2001.

D. Haussler, Convolution kernels on discrete struc-
tures, Tech. report, University of California Santa
Cruz, 1999.

T. Jaakkola and D. Haussler, Ezploiting generative
models in discriminative classifiers, Advances in Neu-
ral Information Processing Systems 11 (1999).

W. G. Macready, Density estimation with mercer ker-
nels, Technical Report TR03.13 of the Research Insti-
tute of Advanced Computer Science (2003).

K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivari-
ate analysis, Academic Press, 1979.

I. T. Nabney, Netlab, (2001).

D. Ormoneit and V. Tresp, Improved gaussian mizture
density estimates using bayesian penalty terms and
network averaging, Advances in Neural Information
Processing Systems, vol. 8, 1995.

P. Smyth and D. Wolpert, Stacked density estimation,
Advances In Neural Information Processing Systems
10 (1998).

A. N. Srivastava and J. Stroeve, Onboard detection
of smow, ice, clouds, and other geophysical processes
using kernel methods, Proceedings of the ICML 2003
Workshop on Machine Learning Technologies for Au-
tonomous Space Applications, 2003.

K. Tsuda, M. Kawanabe, G. Ratsch, S. Sonnenburg,
and K.R. Muller, A new discriminative kernel from
probabilistic models, Neural Computation (2002).

